Continuous delivery of endogenous inhibitors from poly(lactic-co-glycolic acid) polymeric microspheres inhibits glioma tumor growth.
نویسندگان
چکیده
PURPOSE There is an urgent need for modalities that can localize and prolong the administration of the antitumor agents, particularly antiangiogenic, to achieve long-term tumor inhibition. However, one of the major obstacles is designing a device in which the biological activity of sensitive endogenous inhibitors is retained. We have designed a biodegradable polymeric device, which provides a unique and practical means of localizing and continuously delivering hemopexin (PEX) or platelet factor 4 fragment (PF-4/CTF) at the tumor site while maintaining their biological activity. The potential and efficacy of this system is shown in vitro and in vivo in a human glioma mouse model. EXPERIMENTAL DESIGN Polymeric microspheres made of poly(lactic-co-glycolic acid) (PLGA) were loaded with very low amounts of PEX and PF-4/CTF. The release profiles of these factors from PLGA and their biological activity were confirmed in vitro using proliferation assays done on endothelial and tumor cells. Tumor inhibition using this system was studied in nude mice bearing a human s.c. glioma. RESULTS PEX and PF-4/CTF released in vitro from PLGA microspheres were biologically active and significantly inhibited the proliferation of human umbilical vein endothelial cells, bovine capillary endothelial cells, and U87-MG cells. A single local s.c. injection of PLGA microspheres loaded with low amounts of PEX or PF-4/CTF resulted in an 88% and 95% reduction in glioma tumor volume 30 days post-treatment. Immunohistochemical analysis of the treated tumors showed a marked decrease in tumor vessel density compared with untreated tumors. CONCLUSION Our findings show that polymeric microspheres are a very promising approach to locally and efficiently deliver endogenous inhibitors to the tumor site leading to a significant inhibition of the tumor.
منابع مشابه
Local delivery of poly lactic-co-glycolic acid microspheres containing imatinib mesylate inhibits intracranial xenograft glioma growth.
PURPOSE In an effort to develop new therapeutic strategies to treat malignant gliomas, we have designed poly (lactic-co-glycolic) acid (PLGA) microparticles that deliver imatinib mesylate, a small molecule tyrosine kinase inhibitor. The local continuous release of imatinib mesylate at the tumor site overcomes many obstacles associated with systemic delivery. EXPERIMENTAL DESIGN Polymeric micr...
متن کاملLoading of Gentamicin Sulfate into Poly (Lactic-Co-Glycolic Acid) Biodegradable Microspheres
Objective: In dental treatments, use of carriers for targeted antibiotic delivery would be optimal to efficiently decrease microbial count. In this study, gentamicin was loaded into polylactic co-glycolic acid (PLGA) microspheres and its release pattern was evaluated for 20 days. Methods: In this experimental study, PLGA microspheres loaded with gentamycin were produced by the W/O/W method....
متن کاملDrug encapsulated aerosolized microspheres as a biodegradable, intelligent glioma therapy.
The grim prognosis for patients diagnosed with malignant gliomas necessitates the development of new therapeutic strategies for localized and sustained drug delivery to combat tumor drug resistance and regrowth. Here we introduce drug encapsulated aerosolized microspheres as a biodegradable, intelligent glioma therapy (DREAM BIG therapy). DREAM BIG therapy is envisioned to deliver three chemoth...
متن کاملPreparing Poly (Lactic-co-Glycolic Acid) (PLGA) Microspheres Containing Lysozyme-Zinc Precipitate Using a Modified Double Emulsion Method
Lysozyme, as a model protein, was precipitated through the formation of protein-Zn complex to micronize for subsequent encapsulation within poly (lactic-co-glycolic acid) (PLGA) microspheres. Various parameters, including pH, type and concentration of added salts and protein concentration, were modified to optimize the yield of protein complexation and precipitation. The resulting protein parti...
متن کاملPreparing Poly (Lactic-co-Glycolic Acid) (PLGA) Microspheres Containing Lysozyme-Zinc Precipitate Using a Modified Double Emulsion Method
Lysozyme, as a model protein, was precipitated through the formation of protein-Zn complex to micronize for subsequent encapsulation within poly (lactic-co-glycolic acid) (PLGA) microspheres. Various parameters, including pH, type and concentration of added salts and protein concentration, were modified to optimize the yield of protein complexation and precipitation. The resulting protein parti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 11 2 Pt 1 شماره
صفحات -
تاریخ انتشار 2005